
第四章 Laplace变换 ②反因果信号的收敛城
总览 fit eβ大 Ertl
def His fohits estdt LIfttil fiie t ee tie stdt
其中S otjw fineβ t dt 二β_s eβ

十to
His土hit门二Jóhiiěǜǚeplaa变换 β s 1-器 e te 了

收敛域
Laplace逆变换

def土 IF门一诃Jjǔ Fisiestdt一般不用 PEI I 愿式
β- 5co o β时无界 β

Laplace变换与Fourier变换的区别与联系 ③双边信号的收敛域

1
Fourier变换需满足绝对可积条件十心时为有限值 fit kt Eit fit Ei七1

eatE it 七一心时为无限值无法做1ourier变换收敛域
iI 可以做Laplace变换

α β

1
Fourier变换只能求yzs
Laplace变换yziyzs Δ单边拉氏变换Fcsfottze stdt
IFouin变换意义清晰 望鼠麦瞿信号作

双 二1.一大 _
腂 estdt

ILaplace变换做分析用电路系统
0拉氏逆变换1

双边需考虑收敛域
9- IktDfiofits es dt 单边无需考虑收敛域
II fit fiifltzestdt fisftp e tdt

-5isftp e rt iEiutdt 常用信号的拉氏变换

α满足一定条件Laplace变换才存在 -收敛域 单边需写出收敛域 双边无需写出收敛域

DEit
收敛域 单边土Eiti fō Eit estdt fte stdt estlES cos01
①因果信号的收敛域

fit ett Elt ②指数信号e at

Fics f_oeate st catdt f e at foetastdt ǎi
t

ǒ二 ats co _a
fó e tdt ¼𦾡域 to的值与变换结果无关1 1单边1
二 0 as ie 的心 _w _ 虋䲜

Is 㗊 e i t 17 103α原式
二叔

- Is we _蘔切
淡文鬬

结果不定

之Idts e at it 0 too时无法确定



规定单边Laplace变换积分下限从 0开始 141尺度变换
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17卷积定理 10初值定理
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Laplace逆变换 ②包含共轭复数极点
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系统函数的零极点分析 ⑥Hes ǎaptur Siatju SI aju
His二品9

uHis二 Iiiis出品 siiiisijiisi
极点 S -1二阶 S -2J szj 小结极点左半平面 衰减

1零点 s 0 S1 j s 1 j s s 1一阶零点1 右半平面 增长

分母阶m分子阶入 虚轴 等幅振荡

Dmon sss His 0 在口处1m n阶零点

②mcn s s HS 口在心处 n m阶极点
父zjǒj
文

ǎjrj

HIS零极点与波形关系

H

若p为实数Aie tEet

P2p3为共轭复数 ettcacosfetbsinβ十

人

DHIS 5 Eit

②His sia eat at

③His-六a ectat I一
④Has szǐuz Ssjw
行

oxju

His二品us 零点控制相位幅度极点控制波形

⑤iaptunt e atsinut Elt



0因果系统 频率响应
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